
J Glob Optim (2010) 46:163–189
DOI 10.1007/s10898-009-9415-1

Outer approximation algorithms for canonical DC
problems

Giancarlo Bigi · Antonio Frangioni · Qinghua Zhang

Received: 26 March 2008 / Accepted: 10 March 2009 / Published online: 25 March 2009
© Springer Science+Business Media, LLC. 2009

Abstract The paper discusses a general framework for outer approximation type algo-
rithms for the canonical DC optimization problem. The algorithms rely on a polar reformu-
lation of the problem and exploit an approximated oracle in order to check global optimality.
Consequently, approximate optimality conditions are introduced and bounds on the quality
of the approximate global optimal solution are obtained. A thorough analysis of properties
which guarantee convergence is carried out; two families of conditions are introduced which
lead to design six implementable algorithms, whose convergence can be proved within a
unified framework.

Keywords DC problems · Polar set · Approximate optimality conditions · Cutting plane
algorithms

1 Introduction

Nonconvex optimization problems often arise from applications in engineering, economics
and other fields (see, for instance, [10,13]). Often, these problems either have a natural for-
mulation or can be reformulated as DC optimization problems, that is nonconvex problems
where the objective function is the difference of two convex functions and the constraint
can be expressed as the set difference of two convex sets. In turn, every DC optimization
problem can be reduced to the so-called canonical DC (CDC) problem through standard

G. Bigi (B) · Q. Zhang
Dipartimento di Informatica, Università di Pisa, Largo B.Pontecorvo 3, 56127 Pisa, Italy
e-mail: giancarlo.bigi@di.unipi.it; bigig@di.unipi.it

Q. Zhang
e-mail: zhang@di.unipi.it

A. Frangioni
Dipartimento di Informatica, Università di Pisa, Polo Universitario della Spezia, Via dei Colli 90,
19121 La Spezia, Italy
e-mail: frangio@di.unipi.it

123

164 J Glob Optim (2010) 46:163–189

transformations, which provide a linear objective function while preserving the structure of
the constraint [22].

Several algorithms to solve the CDC problem have been proposed [7,11,12,18,22,23,27,
28,31]; many of them are modifications of the first cutting plane algorithm proposed by Tuy
in [22]. The original algorithm builds outer approximations of the intersection between the
feasible region and the level sets of the objective function, and seeks a point there inside.
If the point is infeasible, then the approximation is improved by cutting it off; otherwise
it gives a better feasible value, and the corresponding level set provides a cutting plane.
Allowing slackened “objective cuts”, i.e. requiring a fixed decrease for the current value, the
algorithm may terminate with an infeasible (approximate optimal) solution. A further variant
was developed in [23] for the case in which the linear objective function is replaced by a con-
vex finite-valued function although this can also be recast as a CDC program. By deploying
non-slackened “objective cuts”, the algorithm terminates with a feasible approximate opti-
mal solution. A general conceptual framework of outer approximation type algorithms was
given in [28]. This algorithmic framework is more efficient and overcomes some defects of
the previous algorithms; for instance, [28] allows to handle the infeasible case, while [22,23]
require a feasible solution as starting point.

The polyhedral annexation algorithms, more akin to those presented in this paper, were
proposed in [27,31] for the special case of a linear program with an additional reverse convex
constraint. These algorithms exploit the “dual form” of the standard optimality condition and
this leads to check optimality in a different way: while outer approximation methods need a
procedure for a general convex maximization problem, polyhedral annexation methods need
the computation of the maximum inner product between variables from two convex sets
[(see (8)]. Afterwards, [29,33] interpreted polyhedral annexation method as dual method
and showed that this algorithm can be extended to any CDC problem.

Several attempts at generalizing the results in the above papers were not entirely success-
ful. A variant of [23] has been proposed in [11], where a binary search on the current value is
proposed; however, this is unnecessary since it does not improve the convergence properties
of the approach. The algorithm proposed in [19], a modified form of the one in [22], as well
as its modified form in [9], were later shown not to guarantee convergence [28]. Similarly,
a counter example disproving convergence was developed in [5] for the cutting plane algo-
rithms of [3,4]. Finally, the analogous algorithm of [17], based on a slightly modified form of
the standard optimality condition, was also shown not to be always convergent [20]; besides,
the modified optimality condition is not easier to check than the standard one.

In this paper, we consider the CDC problem relying on an alternative equivalent formula-
tion based on a polar characterization of the constraint. We define a unified algorithmic frame-
work for outer approximation type algorithms, which are based on an “oracle” for checking
the global optimality conditions, and we study different sets of conditions which guarantee
its convergence to an (approximated) optimal solution. As the oracle is the most computa-
tionally demanding part of the approach, we allow working with an approximated oracle
which solves the related (nonconvex) optimization problem only approximately. Because of
this, we briefly investigate approximate optimality conditions in order to derive bounds on
the quality of the obtained solution. Our analysis identifies two main classes of approaches,
which give rise to six different implementable algorithms, four of which can’t be reduced to
the original cutting plane algorithm by Tuy and its modifications.

The paper is organized as follows. In Sect. 2 the polar based reformulation of the CDC
problem is introduced, and the well-known optimality conditions are recalled. In Sect. 3
we propose a notion of approximate oracle and we define corresponding approximate opti-
mality conditions, investigating the relationships between the exact optimal value and the

123

J Glob Optim (2010) 46:163–189 165

approximate optimal values. In Sect. 4 a thorough convergence analysis is carried out for the
“abstract” unified algorithmic framework, and then six different implementable algorithms
are proposed which fit within the framework. Finally, some conclusions are drawn in the last
section.

2 The canonical DC problem

Throughout all the paper we focus on the CDC minimization problem

(CDC) min{dx | x ∈ �\int C}
where � ⊆ R

n and C ⊆ R
n are full-dimensional closed convex sets, d ∈ R

n and dx denotes
the scalar product between d and the vector of variables x ∈ R

n .
The assumption on the dimension of the constraining sets is not restrictive. In fact, if � is

not full-dimensional, the problem can be easily reformulated in the (affine) space generated
by �. If C is not full-dimensional, then we have intC = ∅ and the problem is actually a
convex minimization problem.

In order to avoid that (CDC) could be reduced to a convex minimization problem, we also
suppose that the set C provides an essential constraint, i.e.

min{dx | x ∈ �} < min{dx | x ∈ �\int C}.
Relying on an appropriate translation, this assumption can be equivalently stated through the
following two conditions

0 ∈ int� ∩ int C, (1)

dx > 0 ∀x ∈ �\int C. (2)

Therefore, we assume that (1) and (2) hold. Notice that these assumptions guarantee that any
feasible solution x ∈ �\C provides a better feasible solution taking the unique intersection
between the segment with 0 and x as end points and the boundary of C , i.e. x ′ ∈ bd (C)∩(0, x)

satisfies dx ′ < dx where bd (C) denotes the boundary of C . As a consequence, all optimal
solutions to (CDC) belong to the boundary of C .

In order to guarantee the existence of optimal solutions, we may assume the boundedness
of the level sets

D(γ) := {x ∈ � | dx ≤ γ }
for the feasible values γ , i.e. those values γ = dx ≥ γ ∗ for some x ∈ �\int C , where

γ ∗ := min{dx | x ∈ �\int C}.
Actually, such an assumption on the level sets is strictly related to the compactness of the
reverse constraining set C as the following result shows.

Lemma 1 Let γ be a feasible value.

(i) If C is compact, then so is D(γ).
(i i) If D(γ) is compact, then

γ ∗ = min{dx | x ∈ �\int Ĉ}
where Ĉ = C ∩ B for any given compact set B such that D(γ) ⊆ int B.

123

166 J Glob Optim (2010) 46:163–189

Proof

(i) Assume by contradiction, suppose there exists a sequence {xk} ⊆ D(γ) such that
‖xk‖ → +∞. Possibly taking a suitable subsequence, let u = limk→∞ xk‖xk‖−1:
clearly du ≤ 0 and u belongs to the recession cone of � [16, Theorem 8.2]. Since
0 ∈ � and C is bounded, there exists λ > 0 such that x0 = 0 + λu ∈ �\C . As
dx0 ≤ 0, assumption (2) is contradicted.

(i i) Let γ̄ := min{dx | x ∈ �\int Ĉ}. Since Ĉ ⊆ C , then γ ∗ ≥ γ̄ . Furthermore, γ ≥ γ ∗
and the compactness of D(γ) guarantee the existence of x̄ ∈ �\int Ĉ such that γ̄ = dx̄ .
As int Ĉ = int C ∩ int B and x̄ ∈ D(γ), then x̄ /∈ int C : x̄ is feasible to (CDC) and
therefore γ ∗ ≤ γ̄ .
�

Therefore, we assume that C is compact throughout all the paper. Moreover, this com-
pactness assumption ensures existence of an optimal solution x∗, and therefore due to (2) we
have γ ∗ = dx∗ > 0, a property that will turn out to be very useful.

The level sets introduced above are also helpful to check whether a feasible value is
optimal or not. In fact, it is straightforward that γ = γ ∗ implies the following inclusion:

D(γ) ⊆ C. (3)

Furthermore, it has been shown (see [29, Proposition 10]) that the necessary optimality
condition (3) is also sufficient when problem (CDC) is regular, i.e.

min{dx | x ∈ �\int C} = inf{dx | x ∈ �\C}. (4)

The above regularity condition is strongly related to the existence of optimal solutions to
(CDC) with additional properties (see Lemma 2). Furthermore, regularity can be exploited
to prove that stopping criteria with finite tolerance yield approximate optimal solutions.

Lemma 2 The regularity condition (4) holds if and only if (CDC) has an optimal solution
x∗ ∈ bd (�\C).

Proof Given any optimal solution x∗ ∈ bd (�\C), there exists a sequence {xk} such that
xk ∈ �\C and xk → x∗; hence

inf{dx | x ∈ �\C} ≤ lim
k→∞ dxk = dx∗ = min{dx | x ∈ �\int C}.

As the reverse inequality always holds, the regularity condition (4) follows.
Vice versa, suppose the regularity condition (4) holds. Therefore, there exists a sequence

{xk} ⊆ �\C such that dxk ↓ γ ∗. By Lemma 1 the compactness of C guarantees that D(γ)

is compact for γ = dx1. Therefore, the sequence {xk} admits at least one cluster point
x∗ ∈ cl (�\C). Since � is closed and xk /∈ C for all k, we have x∗ ∈ � and x∗ /∈ int C .
This implies that x∗ is feasible and hence optimal as dx∗ = γ ∗. Since all optimal solutions
belong to the boundary of C , then x∗ /∈ �\C and therefore x∗ ∈ bd (�\C).
�

Figure 1 shows the case of a non-regular problem: the unique optimal solution x∗ does not
belong to bd (�\C), in accordance with Lemma 2, and the feasible value γ is not the optimal
one though it satisfies (3).

The constraint x /∈ int C is the source of nonconvexity in problem (CDC) and it is given
just as a set relation. However, relying on the polarity between convex sets, we can express
this nonconvex constraint in a different fashion. Let us recall that

C∗ = {w ∈ R
n | wx ≤ 1, ∀x ∈ C}

123

J Glob Optim (2010) 46:163–189 167

Ω C cl(Ω \ C)Ω \ int Cd

x*

dx = γ

D(γ)

Fig. 1 Lack of regularity

is the polar set of C and it is a closed convex set. Exploiting bipolarity relations (see, for
instance, [16]), it is easy to check that the assumption 0 ∈ int C ensures that x /∈ int C if and
only if wx ≥ 1 for some w ∈ C∗. Therefore, problem (CDC) can be equivalently formulated
as

min{dx | x ∈ �,w ∈ C∗, wx ≥ 1} (5)

where polar variables w have been introduced and the nonconvexity is given by the inequality
constraint, which asks for some sort of reverse polar condition. Also, the assumption 0 ∈ int C
ensures the compactness of C∗. The exploitation of polar variables will be an important tool
to devise novel algorithms for (CDC) through its reformulation (5).

Relying on bipolarity relations, the optimality condition (3) can be equivalently stated in
a polar fashion as

D(γ) × C∗ ⊆ {(x, w) ∈ R
n × R

n | wx ≤ 1} (6)

while the regularity condition (4) reads

min{dx | x ∈ �,w ∈ C∗, wx ≥ 1} = inf{dx | x ∈ �,w ∈ C∗, wx > 1}. (7)

As an immediate consequence of (6), any optimal solution (x∗, w∗) to (5) satisfies both
x∗ ∈ bd (C) and w∗x∗ = 1. Since all the algorithms will be built to attain condition (6), in
the following we always assume that condition (7) holds.

3 Approximate optimality conditions

Given a feasible value γ , the optimality condition (3) or (6) should be checked in order to
recognize whether or not γ is the optimal value. Unfortunately, there is no known efficient
way to check the inclusion between two sets. Yet, any exact algorithm for (CDC) or (5) must
eventually cope with this problem.

3.1 Optimality conditions and (approximate) oracles

In order to make (3), or equivalently (6), more readily approachable, we consider the follow-
ing “optimization version” of the optimality conditions:

max{vz − 1 | z ∈ D(γ), v ∈ C∗}. (8)

Obviously, (6) holds if and only if the optimal value v(OCγ) of (8) is nonpositive. Thus the
above problem provides a way for checking optimality of a given value γ . Since the objec-
tive function of (8) is not concave, there are no known efficient approaches for this problem
as well. However, checking (6) through the optimization problem (8) has the advantage of
making it easy to define a proper notion of approximate optimality conditions.

123

168 J Glob Optim (2010) 46:163–189

A first way of approximating problem (8) is to replace D(γ) and C∗ with two convex sets
S and Q, respectively, satisfying

C∗ ⊆ Q, (9)

D(γ) ⊆ S. (10)

This is a standard step in cutting plane (outer approximation) approaches, where S and Q
are chosen to be “easier” than the original sets (e.g. polyhedra with possibly few vertices or
facets) and iteratively refined to become better and better approximations of D(γ) and C∗
as needed. Hence, one considers the following relaxation of (8):

max{vz − 1 | z ∈ S, v ∈ Q}, (11)

whose optimal value v(OCγ) provides an upper bound on v(OCγ); thus, the inequality
v(OCγ) ≤ 0 provides a convenient sufficient optimality condition for (5). If it does not hold,
then either γ is not the optimal value, or S and Q are not “good” approximations of D(γ)

and C∗, respectively.
All the cutting plane algorithms presented in this work follow the same basic scheme:

(11) is solved and its solution is used to improve S, or Q, or γ , in such a way to guarantee
convergence of γ to the optimal value. The focus of the research is on devising a number of
different ways to achieve a convergent algorithm for (5) out of an “oracle” for (11). However,
it is likely that in any such approach the solution of (11) is going to be the computational
bottleneck. The problem could be easily solved if the vertices of S and Q were known, and
“few”, since an optimal solution (z̄, v̄) can surely be found such that z̄ is a vertex of S and v̄

is a vertex of Q. The problem would be easy even if only one of the two polyhedra had “few”
vertices, since the computation of the best pairing for any given vertex only requires solving
a linear program. This is, basically, the approach suggested in the literature for solving (11).

Unfortunately, as we will see, the number of inequalities in the description of S and Q
may grow large during the solution process, and the number of vertices grows exponen-
tially fast in the number of inequalities; therefore, it must be expected that the number of
vertices rapidly becomes unmanageable, making exact solution to (11) by means of vertex
enumeration techniques impractical. Therefore, it makes sense to consider solving (11) only
approximately; this may actually mean two different things:

1. Computing a “large enough” lower bound on v(OCγ), i.e. finding a feasible solution
(z̄, v̄) of (11) “sufficiently close” to the optimal solution;

2. Computing a “small enough” upper bound l ≥ v(OCγ).

This is the rationale behind our definition of an approximate oracle for (11). In our devel-
opment we will assume availability of a procedure � which, given S, Q, γ , and two positive
tolerances ε and ε′

– either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (12)

– or produces a pair

(z̄, v̄) ∈ S × Q such that v̄z̄ − 1 ≥ εv(OCγ) > ε′. (13)

We stress the fact that, for the sake of our approach, only one of the two conditions is actually
needed at any given time; indeed, v(OCγ) is either positive or non-positive, so we only need
to prove whichever of the conditions happens to be true for the current value of γ .

123

J Glob Optim (2010) 46:163–189 169

Algorithmically, the two notions correspond to two entirely different classes of approaches.
Lower bounds are produced by heuristics computing feasible solutions. In this context, effec-
tive heuristics exploiting the structure of (11) may be alternating minimization methods,
whereby one of the two variables is kept fixed and a linear maximization problem is solved
to optimize on the other, and then the role is reversed; iterating this procedure provably leads
to a local optima of the problem [8], and this approach has been experimentally proven to be
remarkably effective in several fields, such as machine learning [6] and image processing [34].
Upper bounds are produced instead by solving suitable relaxations of (11), i.e. by replacing
the non-concave objective function vz with a suitable concave upper approximation. In partic-
ular, one may use well-known results that characterize the concave envelope (lower concave
approximation) of the function, which happens to be polyhedral in this particular case [14]. If
none of the two approaches in isolation is capable of satisfying the corresponding one among
(12) and (13), exact algorithms combining the two can then be used to push the lower bound
and the upper bound arbitrarily close together, until eventually one of the two conditions is
realized. This can be obtained by iteratively partitioning the feasible space—typically on a
variable-by-variable basis, which in this case has the advantage of keeping separability in
the constraints set—and re-computing the bounds on each partition (e.g. [2,15] among the
many).

Clearly, (13) corresponds to a pretty weak requirement about the way in which (11) is
solved: a solution, which is optimal only with fixed but arbitrary relative tolerance ε > 0
and absolute tolerance ε′, is required. Condition (12) allows the upper bound to be “small
enough” but positive, rather than non-negative; this is taken as the stopping condition of the
approach, and we will show that the positive tolerance allows for finite termination of the
algorithms even when γ is optimal. The drawback is that a feasible value γ needn’t be optimal
when (12) holds: the next subsection is therefore devoted to the study of the relationships
between the “quality” of γ and the tolerances ε and ε′.

3.2 Approximate optimality conditions

The stopping criterion (12) implies v(OCγ) ≤ ε′/ε: the tolerances provide the upper bound
δ = ε′/ε for the optimal value of (8). The values γ for which this upper bound holds are
strictly related to the following approximated problem

min{dx | x ∈ �,w ∈ C∗, wx ≥ 1 + δ}, (14)

which is obtained by perturbing the right-hand side of the nonconvex constraint in (5). Our
analysis does not require any regularity assumption on (14) and it is based on the following
value function

φ(δ) := inf{dx | x ∈ �,w ∈ C∗, wx > 1 + δ},
or equivalently

φ(δ) = sup{γ | D(γ) × C∗ ⊆ {(x, w) ∈ R
n × R

n | wx ≤ 1 + δ}}.
Proposition 1 Let δ ≥ 0. Then, the following statements are equivalent:

(i) v(OCγ) ≤ δ;
(i i) D(γ) × C∗ ⊆ {(x, w) ∈ R

n × R
n | wx ≤ 1 + δ};

(i i i) γ ≤ φ(δ).

Proof The equivalence between (i) and (i i) follows immediately from the definition of
v(OCγ). Analogously, (i i) implies (i i i) by the definition of φ(δ).

123

170 J Glob Optim (2010) 46:163–189

Suppose (i i) does not hold: there exist x ∈ D(γ) and w ∈ C∗ such that wx > 1+ δ. Take
any t ∈ (0, 1) large enough to have w(t x) > 1 + δ. Since 0 ∈ �, the convexity of � implies
t x ∈ �; obviously d(t x) < dx ≤ γ . Therefore, (t x, w) guarantees φ(δ) < γ contradicting
(i i i).
�

As (i i) with δ = 0 reduces to the optimality condition for problem (5), inclusion (i i) can
be considered as an approximate optimality condition for (5).

The stopping criterion (i) guarantees approximate optimality and condition (i i i) pro-
vides the adequate tool to evaluate the quality of the approximation. In fact, the regularity
assumption (7) reads γ ∗ = φ(0) and therefore

0 ≤ γ − γ ∗ ≤ φ(δ) − φ(0)

holds for any feasible value γ which satisfies (i). If φ is Lipschitz, then for any feasible value γ

satisfying the stopping criterion (12), i.e. (i)with δ = ε′/ε, we have that 0 ≤ γ−γ ∗ ≤ Mε′/ε,
where M is the Lipschitz constant. The following results provide conditions which guarantee
the Lipschitz behaviour of φ.

Theorem 1 [35, Theorem 2.2.1] If there exists an optimal solution (x∗, w∗) to (5) such
that T (�, x∗) � T (C, x∗), then φ is locally Lipschitz at 0 (where T denotes the Bouligand
tangent cone).

Theorem 2 [35, Corollary 2.2.1] If C is a polyhedron, then φ is locally Lipschitz at 0.

4 Conditions and algorithms

In this section we present several algorithms which (approximately) solve (CDC) through its
reformulation (5) if an approximated oracle � is available. We first establish a hierarchy of
abstract conditions ensuring convergence; then, for each set of conditions we propose actual
implementable procedures which realize it.

4.1 General convergence conditions

All the algorithms will follow the generic cutting plane scheme sketched in the previous
section. More in details, a nonincreasing sequence of feasible values {γ k} is produced, and
the oracle � is called for each γ k , thereby producing either a value lk such that condition
(12) holds, or points zk and vk such that (13) are satisfied. By repeatedly calling the oracle,
we can construct a procedure which either proves that γ k satisfies condition (12) or produces
a better feasible value γ k+1 < γ k . In the latter case, γ k+1 is associated to (produced by)
points xk and wk such that

xk ∈ C, wk ∈ C∗, wk xk = 1, (15)

which implies also (xk, wk) ∈ bd (C) × bd (C∗). In fact, if xk ∈ int C (analogously for
wk ∈ int C∗), then wk xk < max{wk x | x ∈ C} ≤ 1 (see [16, Theorem 13.1]). The rationale
for (15) is that any optimal solution must satisfy these conditions.

It must be stressed that the above conditions do not require x ∈ � and therefore (xk, wk)

may be infeasible for the polar reformulation (5). Anyway, (5) can be equivalently stated as

min{ζ(w) | w ∈ C∗} (16)

123

J Glob Optim (2010) 46:163–189 171

where

ζ(w) = min{θ(x) | wx ≥ 1}
and

θ(x) =
{

dx if x ∈ �

+∞ otherwise.

Therefore, the polar variable wk is always feasible for (16), though it may be θ(xk) = +∞.
Since ζ(w) ≤ θ(x) for all pairs (x, w) satisfying (15), we can choose γ k+1 = ζ(wk)

whenever xk /∈ �. As ζ(wk) is the optimal value of a convex problem, it can be assumed to
be efficiently computable. Moreover, if γ k+1 turns out to be optimal, then wk is the “polar
part” of an optimal solution: in fact any

x̄ ∈ argmin {dx | x ∈ �,wk x ≥ 1}
provides the complementary x part of the optimal solution.

Thus, a given pair (xk, wk) can provide two (potentially) different feasible values: θ(xk)

which is essentially costless to compute but may be infinite, and ζ(wk) whose computation
requires the solution of a convex program. In general one may want to avoid the computation
of ζ(wk) unless it is strictly necessary; to allow a general treatment we will in the following
indicate with γ (x, w) a function taking a pair (x, w) satisfying (15) and producing a feasible
value. Which of the two possible implementations is required will be discussed in the context
of each implementable algorithm.

With the above notation, we can introduce the prototype of our algorithms.

Algorithm 1 Prototype algorithm

0. γ 1 = +∞; k = 1;
1. If the optimality condition (3) holds, then γ k is the optimal value: stop;
2. Select (xk , wk) satisfying (15) such that γ k+1 = γ (xk , wk) < γ k ;

set k = k + 1; goto 1.

Clearly, if at Step 0 (initialization) some feasible pair (x0, w0) is known, one can alterna-
tively set γ 1 = γ (x0, w0). An important feature of Algorithm 1 is that {γ k} is a decreasing
sequence bounded below:

0 ≤ lim
k→∞ γ k = γ ∞ < · · · < γ k+1 < γ k < · · · < γ 1.

Therefore, {D(γ k)} is a “non-increasing” sequence of sets, i.e.

D(γ ∞) ⊆ · · · ⊆ D(γ k+1) ⊆ D(γ k) ⊆ · · · ⊆ D(γ 1).

Obviously, Algorithm 1 is too general to deduce any meaningful property; something more
has to be said:

1. How exactly the optimality condition (3) is checked.
2. How (xk, wk) such that γ (xk, wk) < γ k is selected once one knows that (3) is not

fulfilled.

The two points are strictly interwoven: finding (xk, wk) such that γ (xk, wk) < γ k imme-
diately proves that γ k is not optimal; vice versa, assume that we have any constructive

123

172 J Glob Optim (2010) 46:163–189

procedure that produces a point zk ∈ D(γ k)\C when γ k is not optimal: there exists wk ∈ C∗
such that wk zk > 1 and xk = (wk zk)−1zk satisfies both xk ∈ D(γ k) and γ (xk, wk) ≤
dxk < dzk ≤ γ k .
Then, a first question is if such a method provides a convergent algorithm; not surprisingly,
without further qualification the answer is negative.

Example 1 Consider (5) with n = 2, d = (0, 1) and the sets

� = {x ∈ R
2 | −1.8 ≤ x1 ≤ 1.96, x2 ≥ −0.1}, C = {x ∈ R

2 | x2
1 + x2

2 ≤ 4};
therefore, we have

C∗ = {w ∈ R
2 | 4(w2

1 + w2
2) ≤ 1}.

Starting from any value γ 1 > 0.87 and applying the above procedure, we can find the
sequences zk = (−1.8, γ k−1), xk = 2zk/||zk || and wk = zk/2||zk ||, which lead to a non-
optimal solution (x∞, w∞) ≈ ((−1.8, 0.87), (−1.8, 0.87)/4), whereas the optimal solution
is (x∗, w∗) ≈ ((1.96, 0.4), (1.96, 0.4)/4).

Thus, some care is needed in choosing the sequence wk in Algorithm 1, as well as the
accompanying sequences zk and xk if the mechanism illustrated above is to be used. Actually,
our “more implementable” approximate optimality condition based on (8) indicates that a
fourth sequence vk , which “is to wk what zk is to xk”, should be taken into account as well. In
fact, we propose the following general assumptions under which convergence can be proved:

vk zk − 1 ≥ ε max{vz − 1 | (z, v) ∈ D(γ k) × C∗} (17)

lim inf
k→∞ vk zk ≤ 1 (18)

where ε ∈ (0, 1). Condition (17) basically says that vk and zk must be produced by some
process attempting to solve the nonconvex problem (8) for γ = γ k , although the process may
be “terminated early” due to the optimality tolerance ε. Condition (18) rather requires the two
sequences to be asymptotically jointly feasible, and, as we will see, there are several different
implementable ways for ensuring that this holds. Anyway, as far as abstract conditions go,
(17) and (18) are sufficient to guarantee convergence to the optimal value.

Proposition 2 If conditions (17) and (18) hold, then the sequence of feasible values {γ k} in
Algorithm1 converges to the optimal value γ ∗.

Proof Since each γ k is a feasible value, we have γ ∗ ≤ γ ∞, i.e. γ ∞ is a feasible value, too.
Hence, (17) implies that

vk zk − 1 ≥ ε max{vz − 1 | (z, v) ∈ D(γ ∞) × C∗}
for all k. Taking the limit, (18) implies

max{vz − 1 | (z, v) ∈ D(γ ∞) × C∗} ≤ 0,

which guarantees (6) for γ ∗ = γ ∞. Therefore, γ ∞ is the optimal value since the regularity
condition (7) holds.
�

When developing a “concrete” algorithm for (CDC), the abstract condition (18) shouldn’t
be directly imposed on the sequences {zk} and {vk}. In fact, these are the results of a “com-
plex” optimization process, i.e. approximately solving (8), upon which we want to impose as

123

J Glob Optim (2010) 46:163–189 173

few conditions as possible, in order to leave as much freedom as possible to different imple-
mentations of this critical task. Therefore, we seek alternative ways for obtaining condition
(18). One possibility is to rely on sequences of points xk and wk , which satisfy one of these
pairs of conditions: ⎧⎪⎪⎨

⎪⎪⎩

lim sup
k→∞

vk(zk − xk) ≤ 0 (a)

lim sup
k→∞

vk xk ≤ 1 (b),
(19)

⎧⎪⎪⎨
⎪⎪⎩

lim sup
k→∞

(vk − wk)zk ≤ 0 (a)

lim sup
k→∞

wk zk ≤ 1 (b).
(20)

Both pairs of conditions clearly imply (18).

Lemma 3 If either (19) or (20) hold, then (18) holds.

Therefore, we can define the two sets of conditions which, separately, guarantee conver-
gence of Algorithm 1:

B1 ≡ (17) ∧ (19), B2 ≡ (17) ∧ (20).

Though they look highly symmetric to each other, we will show that B1 and B2 are by no
means equivalent. In fact, we will propose several different sets of conditions (in particular,
four for B1 and two for B2) which imply one of them, and develop implementable subproce-
dures that attain these conditions, thereby defining six different implementable algorithms.

4.2 The outer approximation machinery

As addressed in Sect. 3, one way to make (8) more tractable is to replace D(γ) and C∗ with
two “simpler” convex sets Q and S such that C∗ ⊆ Q and D(γ) ⊆ S. Of course, this requires
some appropriate machinery to update S and Q in order to make them “good enough” approx-
imations of � and C∗. Convexity of both sets allows to rely on cutting procedures based on
standard separation tools. In fact, the result below follows readily from the general Basic
Outer Approximation Theorem [9, Theorem II.1].

Theorem 3 Let r be a convex function such that R = {x ∈ R
n | r(x) ≤ 0} satisfies 0 ∈ int R.

Let {Rk} be a sequence of convex sets and {xk} be a sequence of points which satisfy the
following conditions:

1. xk ∈ Rk\R
2. Rk+1 = Rk ∩ {x ∈ R

n | pk(x − yk) + r(yk) ≤ 0} where pk ∈ ∂r(yk) for some
yk ∈ [0, xk)\int R.

Then, any cluster point x̄ of the sequence {xk} belongs to bd (R).

Theorem 3 suggests the standard cutting-plane procedure described in Subprocedure 1. It
takes a “simple” representation S (typically a polyhedron) of the convex set R and a point x
which proves the two are different, and it “improves” S to a representation of R which does
not contain x (and still is a polyhedron if S is) by intersecting S with a separating hyperplane
which cuts off x but no point in R. Due to Theorem 3, iterating this process leads, in the limit,

123

174 J Glob Optim (2010) 46:163–189

Subprocedure 1 Cutting-Plane subprocedure
Input: a closed convex set R = {x ∈ R

n | r(x) ≤ 0} such that 0 ∈ int R,
a closed convex set S such that R ⊆ S and a point x ∈ S\R.

1. Select a point y ∈ (0, x) ∩ bd (R) and a sub-gradient p ∈ ∂r(y).
2. Set S = S ∩ {x | p(x − y) + r(y) ≤ 0}.

Output: S.

to a point in R; in other words, S becomes an “arbitrarily close” representation of R near a
cluster point.

It is worth remarking that condition 0 ∈ int R is required to ensure that y �= x , and there-
fore that the hyperplane actually separates R and x strictly. In our setting, the condition is
satisfied for D(γ): this is due to (1) and to the fact that γ ≥ γ ∗ > 0, itself a consequence
of the boundedness of C as discussed in Sect. 2. Boundedness of C is also equivalent to
0 ∈ int C∗; therefore, the condition is a fortiori true for S and Q, the sets Subprocedure 1
will be called upon, due to (10) and (9), respectively.

4.3 A generic outer approximation subprocedure

We can now define a generic outer approximation procedure which, only provided with an
approximate oracle �, allows implementations of Algorithm 1 which attain the convergence
conditions introduced in Sect. 4.1. We call this a “generic” outer approximation procedure
because it depends on two parameters: a selection rule � for the x and w variables, and a
stopping criterion ϒ . In this subsection we will describe the properties of the subprocedure
which are independent of the choices of � and ϒ ; later on, we will show several different
possible choices for these, leading to different implementable algorithms.

Subprocedure 2 Outer approximation subprocedure
Input: Q and S, closed convex sets satisfying (9) and (10), a feasible value γ .

0. S1 = S; Q1 = Q; i = 1;
1. Call the oracle � for Si , Qi , γ . If the oracle produces an upper bound

li satisfying condition (12), then stop.
2. Otherwise, � produces (zi , vi) satisfying (13);

Select (xi , wi) satisfying (15) and condition �;
3. If zi /∈ D(γ) then use Subprocedure 1 with D(γ), Si and zi to get Si+1;

else Si+1 = Si ;
4. If vi /∈ C∗ then use Subprocedure 1 with C∗, Qi and vi to get Qi+1;

else Qi+1 = Qi ;
5. If stopping criterion ϒ holds then stop.

else i = i + 1; goto 1.
Output: Qi and Si ; either li , or xi , wi , zi , vi .

Conditions (10) and (9) guarantee that D(γ) and C∗ are included in Si and Qi , respec-
tively, for i = 1. The cutting-plane Subprocedure 1 ensures this is still true for any i and
therefore we get the following “non-increasing” sequences of sets:

D(γ) ⊆ · · · ⊆ Si+1 ⊆ Si ⊆ · · · ⊆ S1,

C∗ ⊆ · · · ⊆ Qi+1 ⊆ Qi ⊆ · · · ⊆ Q1.

123

J Glob Optim (2010) 46:163–189 175

We can now prove the basic properties of Subprocedure 2, which are independent of the
choice of � and ϒ .

Lemma 4 If Subprocedure2 never ends, then all the cluster points of {zi } and {vi } belong
to D(γ) and C∗, respectively.

Proof Subprocedure 2 generates two sequences of points {zi } and {vi } such that zi ∈ Si ,
vi ∈ Qi , and the hypotheses of Theorem 3 are satisfied; hence, all the cluster points of {zi }
and {vi } belong to D(γ) and C∗, respectively.
�

It will be crucial to ensure that the sequences {zi } and {vi } do indeed have cluster points.
As both D(γ) and C∗ are assumed to be compact, it is very natural to suppose also that

{zi } and {vi } are bounded. (21)

In fact, this condition holds, for instance, if S1 and Q1 are compact, which is not a restrictive
assumption as D(γ) and C∗ are compact too. Therefore, from now onwards we suppose that
(21) always holds. Note that the sequences {xi } and {wi } are always bounded as due to (15)
they belong to bounded sets C and C∗, respectively.

Corollary 1 If ε′ > 0, and Subprocedure2 never ends, then no cluster point of {zi } belongs
to C.

Proof By Lemma 4 all cluster points of {vi } belong to C∗ and (21) guarantees that at least
one exists. If there were a cluster point of {zi } in C , one would have that lim inf i→∞ vi zi ≤ 1
in contradiction with vi zi − 1 > ε′, which is guaranteed by the oracle for any i [c.f. (13)].

�
Proposition 3 If ε′ > 0 and D(γ) ⊆ C, then Subprocedure2 stops after a finite number of
iterations.

Proof Suppose Subprocedure 2 never ends; due to (21), the sequence {(zi , vi)} has at least a
cluster point which belongs to D(γ)×C∗ by Lemma 4. Since D(γ) ⊆ C , then all the cluster
points actually belong to C × C∗: therefore, we have lim inf i→∞ vi zi ≤ 1 which yields a
contradiction as in Corollary 1.
�

The above proofs show the need of requiring ε′ > 0, since for ε′ = 0 the subprocedure
may never stop. In other words, Subprocedure 2 can not finitely prove that the optimal value
is optimal; this is why it is relevant to clarify the relationship between approximated optimal
values and the optimal value.

Finally, it is useful to remark that while condition (18) is characteristic of optimizing
sequences, it holds for every fixed γ by substituting xi to zi , even if ε′ = 0.

Lemma 5 If Subprocedure2 never ends, then lim supi→∞ vi x i ≤ 1.

Proof Lemma 4 guarantees that all the cluster points of {vi } belong to C∗. Since xi ∈ C for
all i , the thesis follows immediately.
�

The subprocedure can then be used to define implementable versions of the prototype
Algorithm 1.

123

176 J Glob Optim (2010) 46:163–189

Algorithm 2 Implementable outer approximation algorithm

0. γ 1 = +∞; Select S1 ⊇ D(γ 1), Q1 ⊇ C∗; k = 1;
1. Call Subprocedure 2 with Sk , Qk , and γ k ;
2. If Subprocedure 2 stops at Step 1, then stop.
3. Set xk , wk , zk and vk as the output of Subprocedure 2;
4. Set Qk+1 and Sk+1, possibly using the output of Subprocedure 2;
5. Set γ k+1 = γ (xk , wk); set k = k + 1; goto 1.

Some remarks on Algorithm 2 are in order:

– Since D(γ k) ⊆ Sk and C∗ ⊆ Qk , (13) guarantees that condition (17) is always satisfied
by all possible variants of the algorithm, i.e. irrespective of the concrete choices for �

and ϒ ;
– At Step 4, the obvious possibility for Qk+1 and Sk+1 is to set them as the sets produced by

Subprocedure 2; this leads to accumulation in Qk and Sk of all cutting planes generated
along the iterates, and therefore possibly to “large” descriptions of Qk and Sk ;

– Which implementation of γ (xk, wk) has to be chosen depends on the properties of the
points xk and wk (see Table 1 in Sect. 4.6) and therefore ultimately on �.

The following subsections are devoted to the study of which conditions � and ϒ result
in a convergent Algorithm 2.

4.4 Algorithms exploiting the set of conditions B1

While the oracle in Subprocedure 2 guarantees (17), condition (19) has to be achieved through
additional properties. The algorithms of this subsection will require (19b) more or less directly
and will obtain (19a) by imposing (20b) and one extra condition, which simply requires xk

and zk to be collinear:

zk = µk
1xk for some µk

1 > 0. (22)

Lemma 6 If (22) holds for all k, then (20b) implies (19a).

Proof Due to (22) and wk xk = 1, (20b) reads lim sup
k→∞

µk
1 ≤ 1, thus we have

lim sup
k→∞

vk(zk − xk) = lim sup
k→∞

(µk
1 − 1)vk xk .

Due to (17) and (22), we have vk xk > 0; therefore, the boundedness of {vk} and {xk} guar-
antees that the above lim sup is less or equal to 0.
�

All algorithms in this subsection will exploit condition (22). Together with (15), this forces
to choose xk ∈ {αzk | α ≥ 0} ∩ bd (C), thereby basically making the choice of xk automatic
once zk is known. Note that the intersection is nonempty due to boundedness of C , and
therefore xk is always well defined.

The easiest way to guarantee that the sequences generated by Algorithm 2 satisfy (22) is
to impose that zi and xi are always collinear in Subprocedure 2. Furthermore, this allows
to prove that Subprocedure 2 either attains a decrease of the objective function or detects
approximate optimality in a finite number of steps, provided that dzi ≤ γ k .

123

J Glob Optim (2010) 46:163–189 177

Lemma 7 Suppose

Sk ⊆ {z ∈ R
n | dz ≤ γ k} (23)

and set

� ≡ [zi = µi
1xi wi th µi

1 > 0].
If ε′ > 0 and Subprocedure2 never ends, then it produces iterates satisfying xi ∈ (0, zi)∩�,
zi /∈ C and γ (xi , wi) < γ for sufficiently large i .

Proof Lemma 4 guarantees that all the cluster points of {zi } and {vi } belong to D(γ k) and C∗,
and Corollary 1 guarantees that each cluster point z̄ of {zi } does not belong to C , therefore
z̄ ∈ �\C . Thus, there exists x̄ ∈ (0, z̄) such that x̄ is a cluster point of {xi }. By even-
tually taking the appropriate subsequences, suppose zi → z̄ and xi → x̄ . All the above
implies that xi ∈ (0, zi) and zi /∈ C for all sufficiently large i . Since 0 ∈ int� and z̄ ∈ �,
we have also x̄ ∈ int� and therefore, xi ∈ � for all sufficiently large i . Hence, we have
γ (xi , wi) ≤ dxi < dzi ≤ γ k as zi ∈ Si ⊆ S1.
�

Condition (23) is actually a mild assumption on how Sk is updated in Algorithm 2: it is
enough to keep the “objective cut” dz ≤ γ k among the inequalities which define Sk and
update it at each iteration to the current value of γ k . Furthermore, this assumption implies
that the membership test in Step 3 of Subprocedure 2 can be reduced to zi /∈ �.

Some of the properties guaranteed by the above Lemma can be exploited in the stopping
criterion ϒ . Anyway, in order to guarantee that the decrease guaranteed by Subprocedure 2
under (22) is “sufficient”, one has to prove also that the set of conditions B1 is satisfied: this
requires (19), which will be achieved through (19b) and (20b). In the next subsections we
develop four different ways in which this can be done.

4.4.1 Algorithm C1

The first possibility, directly inspired by the algorithms already proposed in the literature
(see, for instance, [29]), is to resort to the following conditions:

dzk ≤ γ k, (24)

xk ∈ (0, zk) ∩ � ∩ bd (C). (25)

Condition (25) implies (22) with µk
1 > 1. Actually, the two conditions are equivalent if

zk /∈ C and xk ∈ � (since we always have xk ∈ bd (C)); anyway we don’t ask for these
two conditions. As (25) guarantees that the sequence of points {xk} is feasible, we can set
γ (xk, wk) = dxk .

Lemma 8 If γ ∗ > 0 and (24), (25) hold for all k, then (20b) holds.

Proof Since xh is feasible, we have

dx0 −
h∑

k=1

(dxk−1 − dxk) = dxh ≥ γ ∗

and therefore

dx0 − γ ∗ ≥
h∑

k=1

(dxk−1 − dxk) ≥
h∑

k=1

(dzk − dxk)

123

178 J Glob Optim (2010) 46:163–189

where the last inequality holds since (24) reads dzk ≤ γ k = dxk−1. Taking the limit, we get

lim
h→+∞

h∑
k=1

(dzk − dxk) ≤ dx0 − γ ∗ < +∞.

Since µk
1 > 1, (25) implies dzk−dxk > 0 and therefore we get dzk−dxk = (µk

1−1)dxk → 0,
which implies that limk→∞ µk

1 = 1 since the feasibility of xk gives dxk ≥ γ ∗ > 0. Therefore,
we have

lim sup
k→∞

wk zk = lim sup
k→∞

µk
1w

k xk = lim sup
k→∞

µk
1 ≤ 1

since (15) guarantees wk xk = 1.
�
Therefore, we can define the following set of conditions

C1 ≡ (17) ∧ (19b) ∧ (24) ∧ (25)

which implies B1 and thus guarantees convergence for Algorithm 2. The proper choice of �

and ϒ ensures that these conditions are finitely attained within Subprocedure 2 except (19b),
which requires the knowledge of the entire sequences generated by Algorithm 2. Therefore,
we consider a positive sequence σ k → 0 and ask for the subprocedure to provide points vi

and xi such that

vi x i ≤ 1 + σ k .

This condition can be considered an appropriate formulation of (19b) within Subprocedure 2
as in this way Algorithm 2 will surely satisfy (19b).

Proposition 4 Suppose that (23) holds and set

� ≡ [zi = µi
1xi wi th µi

1 > 0], ϒ ≡ [xi ∈ �] ∧ [vi x i ≤ 1 + σ k].
If ε′ > σ k > 0, then Subprocedure2 ends in a finite number of steps; if it stops at Step 5, it
reports points xi , wi , zi and vi satisfying the set of conditions C1.

Proof Lemma 5 and 7 guarantee that the stopping criterion ϒ will be satisfied for i large
enough, independently from the choice of σ k . Therefore, Subprocedure 2 ends in a finite
number of steps. Suppose it ends at Step 5. The stopping criterion ϒ directly guarantees
(17), (19b) holds as all iterates satisfy (13), (24) follows immediately from the assumption
on S1 as Si ⊆ S1. Finally, the stopping criterion ϒ and (13) allow to get

0 < vi x i ≤ 1 + σ k < 1 + ε′ ≤ vi zi = µi
1v

i x i

where the first inequality follows from � and (13). This implies µi
1 > 1 and thus we have

zi /∈ C . Therefore, xi ∈ (0, zi) ∩ bd (C) and hence (25) holds since the stopping criterion ϒ

provides xi ∈ �.
�
An illustration of Algorithm 2 under conditions C1 is provided in Fig. 2. The oracle is

called onto S1 and Q1 (dashed squares), which outer-approximate � and C∗ (solid circles)
respectively, yielding z1 and v1. Note that working with Q1, an outer approximation of C∗,
corresponds to considering the set difference between S1 and the polar of Q1 (oblique dashed
square), an inner approximation of C . In the x (primal) space, the intersection between the
line joining z1 and 0 with bd (�) provides a linear inequality (s1) cutting off z1, which
can then be used to improve S1; the same happens in the w (polar) space. Assuming that

123

J Glob Optim (2010) 46:163–189 179

x*

ΩC
C*

d

0
0

z1

x1 v1

q1

s1

dx
=

γ
2 S1 Q1

Fig. 2 Illustration of Algorithm 2 under conditions C1

v1x1 ≤ 1 + σ 1, and therefore the stopping criterion ϒ holds, the subprocedure ends provid-
ing the new feasible value γ 2, and the corresponding objective cut drives convergence of the
algorithm by cutting off a substantial part of �.

For this algorithm to work, the sequence {σ k} has to be defined explicitly, either a-priori
or dynamically as it is used to stop Subprocedure 2. Unlike most algorithms in the literature,
it is not needed to require µi

1 > 1 at every iteration within the subprocedure, thus leaving a
wider freedom of choice.

4.4.2 Algorithm C2

An alternative way to obtain (19b) is to require

vk xh ≤ 1 for all h < k. (26)

Lemma 9 If (26) holds for all k, then (19b) holds.

Proof Assume by contradiction that vk xk > 1 + δ for infinitely many k and a given δ > 0.
Since {vk} and {xk} are bounded, we can suppose vk → v̄ and xk → x̄ (eventually taking
the appropriate subsequences). Condition (26) implies that v̄xh ≤ 1 for all h and therefore
v̄x̄ ≤ 1, a contradiction.
�

Therefore, we can define the set of conditions

C2 ≡ (17) ∧ (24) ∧ (25) ∧ (26)

which implies C1 and therefore B1, thus ensuring convergence for Algorithm 2.
Clearly, condition (26) is guaranteed if

Qk ⊆
⋂
h<k

{v ∈ R
n | vxh ≤ 1}. (27)

This can be easily achieved updating Qk+1 in Step 4 of Algorithm 2 as follows:

Qk+1 = Qi ∩ {v ∈ R
n | vxi ≤ 1}, (28)

where Qi and xi are those produced at the end Subprocedure 2.

123

180 J Glob Optim (2010) 46:163–189

Lemma 10 If (28) holds, then C∗ ⊆ Qk+1.

Proof Subprocedure 2 guarantees C∗ ⊆ Qi . If we consider the support function of C , namely

σC (v) := max{vx | x ∈ C},
then we have

C∗ = {v ∈ R
n | σC (v) − 1 ≤ 0}.

Since (15) guarantees xi ∈ C , any v ∈ C∗ satisfies vxi ≤ σC (v) ≤ 1.
�
In this way all the inequalities produced by the Subprocedure 2 are kept: the “quality” of

Qk+1 may improve, reducing the number of iterations required to stop the subprocedure, but
it is likely to increase the cost of each iteration; the practical impact of this trade-off could
be gauged only experimentally. In any case, in (28) it is always possible to replace Qi with
Qk or any intermediate Q j produced by the subprocedure since they both contain C∗.

Again, an implementable version of the Algorithm 2 can be obtained by choosing � and
ϒ properly.

Proposition 5 Set

� ≡ [zi = µi
1xi wi th µi

1 > 0], ϒ ≡ [xi ∈ �] ∧ [zi /∈ C].
If ε′ > 0 and (27) holds, then Subprocedure2 ends in a finite number of steps; if it stops at
Step 5, it reports points xi , wi , zi and vi satisfying the set of conditions C2.

Proof Analogous to that of Proposition 4, considering that (26) follows from (27) and that
xi ∈ � and zi /∈ C imply (25).
�

The effect of (28) is depicted in (the polar part of) Fig. 3, relative to the same instance
of Fig. 2. Exploiting polarity relationships, x1 provides another inequality in the polar space
cutting off v1, that can be used to improve Q1. This somewhat strengthens the convergence
properties of the algorithm, doing away with the need for the sequence {σ k}, but at the
potential cost of requiring a large number of inequalities to be kept.

4.4.3 Algorithm C3

Lemma 9 states that condition (19b) is implied by condition (26) under our boundedness
assumptions. Symmetrically, we can prove the following result in the same way.

x*

ΩC

d

0

z1

x1

w
1x

=
1

C*

0

v1

w
x 1

=
1

S1 Q1

dx
=

γ
2

Fig. 3 Illustration of Algorithm 2 under conditions C2 and C3

123

J Glob Optim (2010) 46:163–189 181

Lemma 11 If

zkwh ≤ 1 for all h < k (29)

hold for all k, then (20b) holds.

Therefore, we can define the set of conditions

C3 ≡ (17) ∧ (19b) ∧ (22) ∧ (29)

which implies B1 (and thus guarantees convergence for Algorithm 2) as (22) and (29) imply
(19a) by combining Lemmas 6 and 11.

Clearly, (29) is guaranteed if

Sk ⊆
⋂
h<k

{z ∈ R
n | whz ≤ 1}. (30)

This is easily obtained, for instance, by implementing Step 4 of Algorithm 2 as

Sk+1 = Si ∩ {z ∈ R
n | wi z ≤ 1} (31)

where Si and wi are those produced at the end Subprocedure 2, but it is always possible
to replace Si with Sk or any intermediate S j produced by the subprocedure. Anyway, the
current value has to be updated through ζ in order to guarantee that Sk+1 outer approximates
D(γ k+1).

Lemma 12 Suppose γ (x, w) = ζ(w). If (31) is used in Algorithm2, then D(γ k) ⊆ Sk for
all k.

Proof The proof is by induction on the iterate index k. If k = 1, the thesis is guaranteed by the
choice of the input data. Suppose the thesis holds for a given k and there exists x̄ ∈ D(γ k+1)

such that x̄ /∈ Sk+1: we have

x̄ ∈ D(γ k+1) ⊆ D(γ k) ⊆ Si

where the last inclusion is guaranteed by the way Subprocedure 2 updates Sk . Therefore, (31)
implies wi x̄ > 1. Since x̄ ∈ �, then x̂ := (wi x̄)−1 x̄ ∈ � (as wi x̄ > 1 and 0 ∈ �). Moreover,
wi x̂ = 1 and therefore γ k+1 ≤ dx̂ < dx̄ providing the contradiction x̄ /∈ D(γ k+1).
�

Again, an implementable version of Algorithm 2 can be obtained by choosing � and ϒ

properly. Note that the correctness of this version requires γ (x, w) = ζ(w); besides, there
is no guarantee that xk is feasible.

Proposition 6 Set

� ≡ [zi = µi
1xi wi th µi

1 > 0], ϒ ≡ [ζ(wi) < γ k] ∧ [vi x i ≤ 1 + σ k],
If ε′, σ k > 0 and (30) holds, then Subprocedure2 ends in a finite number of steps; if it stops
at Step 5, it reports points xi , wi , zi and vi satisfying the set of conditions C3.

Proof Analogous to that of Proposition 4, considering that (22) comes by � and that (29) is
implied by (30).
�

123

182 J Glob Optim (2010) 46:163–189

Like Algorithm C1, one has to use a sequence σ k converging to zero explicitly; in this
case, however, it is not required σ k < ε′, at least initially.

The impact of (31) is illustrated in (the primal part of) Fig. 3; symmetrically to C2, w1

provides another inequality in the primal space cutting off z1, that can be “significantly
deeper” than s1 (cf. Fig. 2), as it does not need to be valid for the whole �, but only for
D(γ 2). Besides, ζ(w1) < θ(x1) in this case, therefore improving the convergence speed of
the algorithm, albeit at the cost of the solution of a further convex program.

4.4.4 Algorithm C4

The sets of conditions C2 and C3 are two independent modifications of C1; the specific
update (28) for Qk+1 is exploited for the former, while the “symmetric” update (31) for Sk+1

is exploited for the latter. The two modifications can be combined: the set of conditions

C4 ≡ (17) ∧ (26) ∧ (22) ∧ (29)

implies B1 thanks to Lemmas 6, 9, and 11 and thus ensuring convergence for Algorithm 2.
The following result provides an implementable version of the algorithm.

Proposition 7 Set

� ≡ [zi = µi
1xi wi th µi

1 > 0], ϒ ≡ [ζ(wi) < γ k].
If ε′ > 0, (27), and (30) hold, then Subprocedure2 ends in a finite number of steps; if it stops
at Step 5, it reports points xi , wi , zi and vi satisfying the set of conditions C4.

4.5 Algorithms exploiting the set of conditions B2

The algorithms of this subsection need (20) instead of (19). As (20b) has been exploited
to achieve (19a), symmetrically (20a) can be obtained through (19b), relying on the “polar
counterpart” of (22), namely

vk = µk
2w

k for some µk
2 > 0. (32)

Together with (15), this forces to choose wk ∈ {αvk | α ≥ 0} ∩ bd (C∗), thereby basically
fixing wk once vk is known. Note that this intersection is always nonempty since C∗ is
compact.

Lemma 13 If (32) holds for all k, then (19b) implies (20a).

Proof Due to (32) and wk xk = 1, (19b) reads lim supk→∞ µk
2 ≤ 1, thus we have

lim sup
k→∞

(vk − wk)zk = lim sup
k→∞

(µk
2 − 1)wk zk ≤ 0

Due to (17) and (32), we have wk zk > 0; therefore, the boundedness of {zk} and {wk} guar-
antees that the above lim sup is less or equal to 0.
�

The algorithms of this subsection will exploit (32). The easiest way to guarantee that the
sequences generated by Algorithm 2 satisfy it is to impose that wi and vi are always collinear
in Subprocedure 2.

123

J Glob Optim (2010) 46:163–189 183

Lemma 14 Suppose (23) holds and set

� ≡ [vi = µi
2w

i wi th µi
2 > 0].

If ε′ > 0 and Subprocedure2 never ends, then it produces iterates satisfying ζ(wi) < γ for
sufficiently large i .

Proof Taking the appropriate subsequences, we can suppose wi → w̄, vi → v̄ and zi → z̄.
The collinearly assumption � implies that v̄ = µ̄w̄ for some µ̄ ≥ 0 and condition (13)
guarantees µ̄ �= 0. Lemma 4 guarantees v̄ ∈ C∗; since wi ∈ bd (C∗), we have w̄ ∈ bd (C∗)
and thus µ̄ ∈ (0, 1]. Therefore, we have

lim
i→∞ wi zi = w̄z̄ = µ̄−1v̄z̄ ≥ lim

i→∞ vi zi ≥ 1 + ε′.

where the last inequality is due to (13). Therefore, wi zi ≥ 1 + ε′/2 holds for all sufficiently
large i . By Lemma 4 we have z̄ ∈ �; since 0 ∈ int�, we get z̄i := (1+ε′/2)−1zi ∈ � for all
sufficiently large i . Hence, we have ζ(wi) ≤ dz̄i < dzi ≤ γ k as wi z̄i ≥ 1 and zi ∈ Si ⊆ S1.

�

Using the above results, we can develop versions of Algorithm 2, which are “symmet-
ric” to those that rely on the set of conditions B1. However, the polar reformulation (5) is
asymmetric in the sense that only the “original” variables x appear in the objective func-
tion. Therefore, only two of those four algorithms can be mirrored in this case. Specifically,
we will develop sets of conditions D1 and D2 corresponding to C3 and C4, respectively. No
algorithms corresponding to C1 and C2 can be devised since they should exploit the condition

wk ∈ (0, vk) ∩ C∗ ∩ bd (�∗),

which is “symmetric” to (25). However, it would imply the existence of an optimal solution
(x∗, w∗) such that w∗ ∈ C∗ ∩bd (�∗), which is not necessarily true: if you consider (5) with
n = 1, d = 1 and � = C∗ = [−1/2, 4], the unique optimal point is (x∗, w∗) = (1/4, 4)

while C∗ ∩ bd (�∗) = {1/4}.

4.5.1 Algorithm D1

We can define the set of conditions

D1 ≡ (17) ∧ (19b) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C3. Due to Lemmas 11 and 13, D1 implies B2 and
therefore it ensures convergence for Algorithm 2. An implementable version can be obtained
by choosing � and ϒ as follows.

Proposition 8 Set

� ≡ [vi = µi
2w

i wi th µi
2 > 0], ϒ ≡ [ζ(wi) < γ k] ∧ [vi x i ≤ 1 + σ k],

If ε′, σ k > 0 and (30) holds, then Subprocedure2 ends in a finite number of steps; if it stops
at Step 5, it reports points xi , wi , zi and vi satisfying the set of conditions D1.

123

184 J Glob Optim (2010) 46:163–189

4.5.2 Algorithm D2

We can define the set of conditions

D2 ≡ (17) ∧ (26) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C4. Due to Lemmas 9, 11 and 13, D2 implies B2 and
therefore it ensures convergence for Algorithm 2. An implementable version can be obtained
by choosing � and ϒ as follows.

Proposition 9 Set

� ≡ [vi = µi
2w

i wi th µi
2 > 0], ϒ ≡ [ζ(wi) < γ k].

If ε′ > 0, (27) and (30) hold, then Subprocedure2 ends in a finite number of steps; if it stops
at Step 5, it reports points xi , wi , zi and vi satisfying the set of conditions D2.

4.6 Summary

We have developed six different implementable versions of Algorithm 2: while they are all
based on Subprocedure 2, they differ for the stopping criterion �, the condition ϒ on the
iterations, how the evaluation function γ is implemented and how Sk and Qk are updated.
All the considered variants are summarized in Table 1.

Now, we want to show that all these algorithms are indeed different, in the sense that they
can produce different optimizing sequences even if the same instance and the same starting
conditions are given. To this aim, we consider problem (CDC) with n = 2, d = (0, 1) and

� = {x ∈ R
2 | −1 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 5, 3x1 − x2 ≤ 4},

C = {x ∈ R
2 | x2

1 + x2
2 ≤ 4}.

Notice that � is a bounded polyhedron, whose vertices provide the alternative description

� = conv ({(1,−1), (−1,−1), (−1, 5), (2, 5), (2, 2)}).
It is easy to check that the unique optimal solution is the intersection between the segment
[(1,−1), (2, 2)] (the boundary of the constraint 3x1 − x2 ≤ 4) and the boundary of C ,
namely the point x∗ = (6 + √

6, 3
√

6 − 2)/5 ∈ �\int C . Therefore, the optimal value is
γ ∗ = (3

√
6 − 2)/5 ≈ 1.0697. Note that all standard assumptions are satisfied: (1) and (2)

hold, C is compact while regularity follows from Lemma 2. Furthermore, the value function

Table 1 Summary of implementable versions of Algorithm 2

� ϒ γ Qk Sk

C1 zi = µi
1xi , µi

1 > 0 xi ∈ � ∧ vi xi ≤ 1 + σ k θ

C2 zi = µi
1xi , µi

1 > 0 xi ∈ � ∧ zi /∈ C θ (28)

C3 zi = µi
1xi , µi

1 > 0 ζ(wi) < γ k ∧ vi xi ≤ 1 + σ k ζ (31)

C4 zi = µi
1xi , µi

1 > 0 ζ(wi) < γ k ζ (28) (31)

D1 vi = µi
2wi , µi

2 > 0 ζ(wi) < γ k ∧ vi xi ≤ 1 + σ k ζ (31)

D2 vi = µi
2wi , µi

2 > 0 ζ(wi) < γ k ζ (28) (31)

123

J Glob Optim (2010) 46:163–189 185

φ is locally Lipschitz at 0, as (0, δ) ∈ T (�, x∗) and (0, δ) /∈ T (C, x∗) for any δ > 0 (see
Theorem 1).

Considering the polar reformulation (5), we have

C∗ = {w ∈ R
2 | 4(w2

1 + w2
2) ≤ 1}.

Since any optimal solution of (5) must satisfy w∗x∗ = 1 and w∗ ∈ bd (C∗), we have that
w∗ = (6 + √

6, 3
√

6 − 2)/20 provides the only possibility for the polar part of the optimal
solution.

In the following, we assume the oracle � to always choose the same (z, v) when S, Q and
γ are the same; furthermore, we set ε = 1 so that the pairs (z, v) satisfying (13) must actually
be optimal for (11). In this way, we eliminate the nondeterminism due to the fact that the
oracle may return different ε−optimal solutions of (11), which may be “many” especially if
ε � 1; nonetheless, the six algorithms all construct different optimizing sequences for this
instance.

Consider the following starting situation:

σ 1 = 0.1, γ 1 = +∞, Q1 = [−1/2, 1/2] × [−1/2, 1/2],
S1 = {x ∈ R

2 | −1 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 10, 3x1 − x2 ≤ 4}
= conv ({(1,−1), (−1,−1), (−1, 10), (2, 10), (2, 2)}) .

All algorithms start call Subprocedure 2 with S1, Q1 and γ 1 as input data. The oracle provides
an optimal solution of the certificate problem

max{vz − 1 | (z, v) ∈ S1 × Q1},
which can be easily obtained comparing the value v̄z̄ for all pairs where z̄ is an extreme point
of S1 and v̄ is an extreme point of Q1. In this case, the unique optimal solution turns out to
be (z1, v1) = ((2, 10), (1/2, 1/2)) with optimal value v(OCγ 1) = 5; thus, according to our
assumptions, this is the pair the oracle � returns for all algorithms.

Algorithms implementing the set of conditions B1. The four algorithms C1, C2, C3, and C4

ask for xi and zi to be collinear. Due to (15) the only possible choice is x1 = (2, 10)/
√

26;
since we have both z1 /∈ C and x1 ∈ �, then the point satisfies also the more restrictive condi-
tion (25). Due to (15) the only choice for the corresponding polar point is w1 = (1, 5)/

√
104.

The subprocedure stops at this first iteration for algorithms C2 and C4, since we have
x1 ∈ �, z1 /∈ C and ζ(w1) ≤ dx1 < γ 1. On the contrary, it does not stop for algorithms C1

and C3 since

v1x1 = 6/
√

26 ≈ 1.1767 > 1 + σ 1.

In algorithm C2 the subprocedure provides the new current value γ 2 = θ(x1) = dx1 =
10/

√
26 ≈ 1.9612 while in algorithm C4 it provides γ 2 as

ζ(w1) = min{dx | x ∈ �, x1 + 5x2 ≥ √
104}.

The optimal solution of the above linear program is x̄1 = (10 + √
26, 3

√
26 − 2)/8 and

therefore the current value will be updated to

γ 2 = ζ(w1) = dx̄1 = (3
√

26 − 2)/8 ≈ 1.6621 < 10/
√

26.

123

186 J Glob Optim (2010) 46:163–189

As for algorithms C1 and C3, the subprocedure performs one more iteration after the sets S1

and Q1 have been updated through Subprocedure 1 (since z1 /∈ � and v1 /∈ C∗):

S2 = S1 ∩ {(x ∈ R
2 | x2 ≤ 5} = �,

Q2 = Q1 ∩ {w ∈ R
2 | √

2(w1 + w2) ≤ 1}.
At the second iteration of the subprocedure the oracle returns the (unique) optimal solution
of the certificate problem

max{vz − 1 | (z, v) ∈ S2 × Q2},
which is (z2, v2) = ((2, 5), (

√
2 − 1, 1)/2). Therefore, the collinearity condition � and (15)

imply x2 = (4, 10)/
√

29 and w2 = (2, 5)/2
√

29. Since x2 ∈ �, ζ(w2) ≤ dx2 < γ 1 and

v2x2 = (3 + 2
√

2)/
√

29 ≈ 1.0823 ≤ 1 + σ 1,

the subprocedure stops: algorithm C1 selects γ 2 = θ(x2) = dx2 = 10/
√

29 ≈ 1.6569 while
algorithm C3 solves the linear program

ζ(w2) = min{dx | x ∈ �, 2x1 + 5x2 ≥ 2
√

29}
in order to get the point x̄2 = (20 + 2

√
29, 6

√
29 − 8)/17) and set γ 2 = ζ(w2) = dx̄2 =

(6
√

29 − 8)/17 ≈ 1.4301.
The four algorithms have all provided different values for γ 2 and therefore they are dif-

ferent from each other.

Algorithms implementing the set of conditions B2. The algorithms D1 and D2 require wi

and vi to be collinear. Due to (15) the only possible choice is w1 = (1, 1)/2
√

2 and the corre-
sponding point in the original space can be only x1 = (

√
2,

√
2). The subprocedure stops at

this first iteration for algorithm D2, since we have x1 ∈ � and therefore ζ(w1) ≤ dx1 < γ 1.
On the contrary, it does not stop for algorithm D1 since

v1x1 = √
2 ≈ 1.4142 > 1 + σ 1.

In algorithm D2 the subprocedure provides the new current value γ 2 as

ζ(w1) = min{dx | x ∈ �, x1 + x2 ≥ 2
√

2} = (3 − √
2)/

√
2 ≈ 1.1213.

and the corresponding optimal solution x̄1 = (1 + √
2, 3 − √

2)/
√

2 is the best achieved
point. Since this value for γ 2 is different from all those seen so far, D2 is yet another different
algorithm.

In algorithm D1 the subprocedure performs a second iteration after the sets S1 and Q1 have
been updated exactly in the same way as in algorithms C1 and C3 (since z1 and v1 are indeed
the same). Therefore, the oracle provides the same z2 = (2, 5) and v2 = (

√
2 − 1, 1)/2.

Due to the collinearity condition � and (15), we get w2 = (
√

2 − 1, 1)/2
√

4 − 2
√

2 and

x2 =
√

2 − √
2(1, 1 + √

2). Since

v2x2 =
√

4 − 2
√

2 ≈ 1.0824 ≤ 1 + σ 1

the subprocedure ends. The value it returns as γ 2 is

ζ(w2) = min{dx | x ∈ �, (
√

2 − 1)x1 + x2 ≥ 2

√
4 − 2

√
2} ≈ 1.4169.

123

J Glob Optim (2010) 46:163–189 187

and the corresponding optimal solution

x̄2 =
(

4 + 2
√

4 − 2
√

2

2 + √
2

,
4 + 6

√
4 − 2

√
2 − 4

√
2

2 + √
2

)

is the best achieved point. Once again, this value for γ 2 is different from all previous ones:
all the six algorithms are different.

5 Comparisons and conclusions

All the convergent outer approximation algorithms recalled in Sect. 1 satisfy the set of con-
ditions C1 or C2, and are special cases of those presented in this paper. Furthermore, it is
basically given for granted that the “oracle” for checking the optimality conditions is real-
ized through enumeration of vertices. The contributions of the present paper are therefore
the following:

– The introduction of “approximate oracle” conditions (12)–(13), which are designed to
allow for more sophisticated and efficient solution procedures, with respect to pure ver-
tex enumeration, to tackle the problem of checking the optimality condition, arguably the
computational bottleneck in this type of approaches.

– A study of the impact of approximations in the optimality conditions onto the quality of
the approximately optimal solutions satisfying them.

– Full exploitation of the “primal-polar” formulation of the optimality conditions based on
(8) in order to derive a very general hierarchy of conditions ensuring convergence.

– A general algorithmic scheme based on the developed hierarchy which gives rise to six
different implementable algorithms, four of which (C3, C4, D1 and D2) do not seem to
have previously been considered in the literature; each of these algorithms can generate
an approximate optimal value in a finite number of steps, where the error can be managed
and controlled.

It may be worth remarking that the “new” algorithms C3, C4, D1 and D2 all use γ (x, w) =
ζ(w). This has been inspired by the reformulation of (CDC) as the quasi-concave minimiza-
tion problem (16) already proposed in [32]. However, in that paper a “cut and split” method
was used, that is entirely different from the outer approximation algorithms proposed in this
paper. Indeed, that method belongs to the main other family of algorithms for canonical DC
problems, that of branch and bound methods (see, for instance, [24–26]). So, this research
has shown how concepts developed for one family of approaches can be useful even for an
entirely unrelated one.

While this paper seems to offer a quite comprehensive convergence theory for “oracle-
based” outer approximation algorithms for canonical DC programs, much still needs to be
done before these algorithms become widely used and accepted as those based on the branch
and bound paradigm. In particular, more work is needed to identify practically efficient ways
to implement the oracle, at least on special types of canonical DC programs in which the sets
� and C have some form of exploitable structure; this will be the focus of further research.

References

1. Al-Khayyal, F., Sherali, H.: On finitely terminating branch-and-bound algorithms for some global opti-
mization problems. SIAM J. Optim. 10, 1049–1057 (2000)

123

188 J Glob Optim (2010) 46:163–189

2. Androulakis, I., Maranas, C., Floudas, C.: α–BB: a global optimization method for general constrained
nonconvex problems. J. Global Optim. 7, 337–363 (1995)

3. Ben Saad, S. : A new cutting plane algorithm for a class of reverse convex 0–1 integer programs. In:
Floudas, C.A., Pardalos, P.M. (eds.) Recent advances in global optimization, pp. 152–164. Princeton
University Press, Princeton (1992)

4. Ben Saad, S., Jacobsen, S.E.: A level set algorithm for a class of reverse convex programs. Ann. Oper.
Res. 25, 19–42 (1990)

5. Ben Saad, S., Jacobsen, S.E.: Comments on a reverse convex programming algorithm. J. Global
Optim. 5, 95–96 (1994)

6. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-supervised support vector
machines. J. Mach. Learn. Res. 9, 203–233 (2008)

7. Fulop, J.: A finite cutting plane method for solving linear programs with an additional reverse con-
straint. European J. Oper. Res. 44, 395–409 (1990)

8. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under
convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

9. Horst, R., Tuy, H.: Global optimization. Springer, Berlin (1990)
10. Horst, R., Pardalos, P.M. (eds.): Handbook of global optimization. Kluwer, Dordrecht (1995)
11. Nghia, M.D., Hieu, N.D.: A method for solving reverse convex programming problems. Acta Math.

Vietnam. 11, 241–252 (1986)
12. Pham, D.T., El Bernoussi, S.: Numerical methods for solving a class of global nonconvex optimization

problems. Int. Ser. Numer. Math. 87, 97–132 (1989)
13. Pintér, J.D. (ed.): Global optimization: scientific and engineering case studies. Springer, Berlin (2006)
14. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10, 425–437 (1997)
15. Ryoo, H., Sahinidis, N.: Global optimization of multiplicative programs. J. Global Optim. 26, 387–

418 (2003)
16. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)
17. Strekalovsky, A.S., Tsevendorj, I.: Testing the R-strategy for a reverse convex problem. J. Global Op-

tim. 13, 61–74 (1998)
18. Thach, P.T.: Convex programs with several additional reverse convex constraints. Acta Math. Viet-

nam. 10, 35–57 (1985)
19. Thoai, N.V.: A modified version of Tuy’s method for solving DC programming problems. Optimiza-

tion 19, 665–674 (1988)
20. Tuan, H.D.: Remarks on an algorithm for reverse convex programs. J. Global Optim. 16, 295–297 (2000)
21. Tuy, H.: Global minimization of a difference of two convex functions. Math. Program. Stud. 30, 150–

182 (1987)
22. Tuy, H. : A general deterministic approach to global optimization via DC programming. In: Hiriart-

Urruty, J.B. (ed.) FERMAT Days 85: mathematics for optimization, pp. 273–303. North-Holland, Amster-
dam (1986)

23. Tuy, H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory Appl. 52, 463–
486 (1987)

24. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization.
Application to concave minimization and DC optimization problems. Math. Program. 41, 161–183 (1988)

25. Tuy, H.: Normal conical algorithm for concave minimization over polytopes. Math. Program. 51, 229–
245 (1991)

26. Tuy, H.: Effect of the subdivision strategy on convergence and efficiency of some global optimization
algorithms. J. Global Optim. 1, 23–36 (1991)

27. Tuy, H.: On nonconvex optimization problems with separated nonconvex variables. J. Global
Optim. 2, 133–144 (1992)

28. Tuy, H.: Canonical DC programming problem: outer approximation methods revisited. Oper. Res.
Lett. 18, 99–106 (1995)

29. Tuy, H.: DC optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook
of global optimization, pp. 149–216. Kluwer, Dordrecht (1995)

30. Tuy, H.: Convex analysis and global optimization. Kluwer, Dordrecht (1998)
31. Tuy, H., Al-Khayyal, F.A.: Global optimization of a nonconvex single facility location problem by sequen-

tial unconstrained convex minimization. J. Global Optim. 2, 61–71 (1992)
32. Tuy, H., Migdalas, A., Varbrand, P.: A quasiconcave minimization method for solving linear two-level

programs. J. Global Optim. 4, 243–263 (1994)
33. Tuy, H., Tam, B.T.: Polyhedral annexation vs outer approximation for the decomposition of monotonic

quasiconcave minimization problems. Acta Math. Vietnam. 20, 99–114 (1995)

123

J Glob Optim (2010) 46:163–189 189

34. Wen, Y.-W., Ng, M.K., Huang, Y.-M.: Efficient total variation minimization methods for color image
restoration. IEEE Trans. Image Process. 17, 2081–2088 (2008)

35. Zhang, Q.H.: Outer approximation algorithms for DC programs and beyond. PhD Thesis, Università di
Pisa, Pisa. http://etd.adm.unipi.it/theses/available/etd-07022008-181656/unrestricted/Thesis.pdf (2008).
Accessed 02 July 2008

123

http://etd.adm.unipi.it/theses/available/etd-07022008-181656/unrestricted/Thesis.pdf

	Outer approximation algorithms for canonical DC problems
	Abstract
	1 Introduction
	2 The canonical DC problem
	3 Approximate optimality conditions
	3.1 Optimality conditions and (approximate) oracles
	3.2 Approximate optimality conditions

	4 Conditions and algorithms
	4.1 General convergence conditions
	4.2 The outer approximation machinery
	4.3 A generic outer approximation subprocedure
	4.4 Algorithms exploiting the set of conditions B1
	4.5 Algorithms exploiting the set of conditions B2
	4.6 Summary

	5 Comparisons and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

